

Α

Mathcad 2000

Oberfläche / Editieren	1
Bearbeiten des Grafikbereiches (x/y)	2
Kreisdiagramme / 3-D-Diagramme / Animationen	3
Ein- und Ausgabe: Tastenkombinationen und Menüpunkte	4
Einstellungen / Formate / Sonstiges	5
Benutzerdefinierte Funktionen, Einheiten	6
Standardfunktionen, Vektoren und Matrizen	7/8
Gleichungen und Gleichungssysteme	8
Wahrscheinlichkeit / Statistik	9
Interpolation / Regression / Glättung	10
Differentialglg. und Transformationen	11
Dateitransfers / Komponenten	12
Symbol. Berechnungen (Symbolik-Menü)	13
Aktive symbol. Berechnung / Schlüsselwörter	14/15
Programmierung	16

MATHCAD-1

 <u>Textregion</u>: mit Anführungszeichen (²-Taste) beginnen und mit STRG-SHIFT-ENTER, Pfeiltasten oder Mauscursor beenden. In die Textregion kann auch ein "Rechenbereich" hineinkopiert werden. (→ *Einfügen / Rechenbereich*). Der eingefügte Rechenbereich wird als Kommentar betrachtet, wenn ² -rechts / Auswertung deaktivieren eingestellt wird. (Buchstabeneingabe + SPACE-Taste bewirkt eine automatische Umwandlung in einen Textbereich)

<u>Hilfsmittel zum Editieren im Rechenbereich</u>

- + Fadenkreuz Einfügepunkt für nächste Operation (*[†], Cursortasten)
- ∟ Einfügemarke Einfügen/Markieren einzelner Zeichen/Variablen (∽[®], Cursortasten)
- _

Steuerung der zweidimensionalen Einfügemarken:			
$ ightarrow$, \leftarrow	Verschieben der Einfügemarke		
[Leertaste]	Vergrößerung des Auswahlbereiches Schritt für Schritt		
Shift + \leftarrow / \rightarrow	Markieren von Bereichen (oder mit 心)		
"Einfg"	Senkrechten Strich der Einfügemarke nach vorne / hinten		

Techts: ermöglicht Deaktivierung eines einzelnen Ausdrucks bzw. das farbliche Hervorheben über die "Eigenschaften"

Ansicht / Lineal: Erlaubt die Definition eigener Tabulatoren etc.

Definition eigener Vorlagen

Man definiere sich Formate für Variablen und Konstanten und Texte (\rightarrow Seite 5). Anschließend die Formatvorlage als **.mct-Datei** im *Template*-Verzeichnis ablegen. **TIP**: Man wähle für "Text" ein deutlich anderes Aussehen als für den Rechenbereich.

<u>Regionen:</u> Definition über *Einfügen / Region*. Durch Anklicken der Region mit ***D-rechts** kann diese gesperrt oder ausgeblendet (eingeblendet durch "Erweitern") werden. Weitere Besonderheiten über ***D-rechts / Eigenschaften / Region** definieren!

Bearbeiten des Grafikbereiches (X-Y-Diagramme)

ACHTUNG: VOR dem Diagramm muß eine Bereichsvariable definiert werden, welche die Argumente (,,x-Werte") festlegt:

z.B: $\mathbf{x} := 0, 0.01..2$ \mathbf{x} durchläuft den Bereich von 0.2p, Schrittweite 0.01 $\mathbf{a} := -2, -1.95..2$ a durchläuft Bereich von -2 bis +2, Schrittweite0.05

n:= 0..10

n durchläuft Bereich von 0 bis 10, Schrittweite 1

Wird keine Bereichsvariabale definiert, wird ein *Quick-Plot* gezeichnet, d.h. das Argument wird *automatisch* auf den Bereich -10 bis 10 festgelegt.

Nachbearbeiten eines Diagramms über 1 - RECHTS

Formatieren ... (erhält man auch durch *A*-Doppelklick-links)

SPUREN:	EN: Type und Darstellungsformen der einzelnen Funktionen		
	* Linien Punkte mit Linien verbunden		
	* Punkte	Punkte für sich allein dargestellt	
	* Fehl	Fehlerbalken (muß 2 Spuren umfassen!!)	
	* Blk	Balkendiagramm (Balkenbreite hängt von Δx ab)	
	*Treppe	Treppenfunktion	
	* Schilder	Nadeldiagramm (z.B. für abgetastete Signale, diskrete Werte,)	
	Ferner können d	ie Stärke, Farbe, Linienart, Punktsymbole sowie Ein-bzw. Ausblenden von	
	Legenden und A	Achsenbeschriftung eingestellt werden.	
XY_Achsen: Ermöglicht u.a. getrennt für X- und Y-Achse: *Logarithmische Skalierung * Darstellung von Gitterlinien * Markierungen (=bestimmte x-/y-Werte) anzeigen (maximal 2 je Achse) * Achsenformat: Kasten / Kreuz / kein / Gleiche Skalierung von x- und y-Achse Beschriftungen Beschriftung der Achsen sowie Eingabe eines Diagrammtitels.			
Standardwerte: Speichern geänderter Vorgaben bzw. Rücksetzen auf die Standardwerte			
Koordinaten	ablesen Nach kopiert werden.	nfahren entlang der Kurve; die X/Y-Werte können in die Zwischenab-lage	
Zoom	Mittels Maus ka	nn ein bestimmter Bereich gezoomt werden bzw. Rückkehr zum Original.	

Auswertung deaktivieren Die automatische Aktualisierung des Diagramms wird verhindert

Eigenschaften...: z.b. Farbliches Hervorheben der Grafik

Kreisdiagramme 💮

Werden im Prinzip gleich wie x-y-Diagramme behandelt. Sie werden dazu verwendet, um Funktionen in Polarform ($r(\phi) = ...$) direkt darzustellen.

3-D-Diagramme

Funktionen der Form z = f(x,y) als Flächen im dreidimensionalen Raum

Es muß zuerst eine Gitternetzfläche berechnet werden, die Ergebnisse werden in einer Matrix gespeichert; die Matrix wird links unten im Diagrammfenster eingetragen. Wird eine äquidistante Teilung der x_i bzw. y_i-Werte gewünscht, kann man wie folgt vorgehen

i:=0 N j:=0 N	$\mathbf{x}_{\mathbf{i}} := \mathbf{x}_{\min} + \frac{\mathbf{i}}{N} \cdot \left(\mathbf{x}_{\max} - \mathbf{x}_{\min} \right)$
	$y_j \coloneqq y_{\min} + \frac{j}{N} \cdot (y_{\max} - y_{\min})$
$\mathbf{f}(\mathbf{x},\mathbf{y}) \coloneqq \mathbf{x}^2 - \mathbf{y}^2$	$A_{i,j} := f(x_i, y_j)$

Vorausgesetzt ist eine vorhandene Festlegung für N, x_{min} , x_{max} , y_{min} und y_{max}

Die Matrix A wird in den Platzhalter des Diagramms (links unten) eingetragen.

Die Nachbearbeitung erfolgt wie bei x-y-Diagrammen über die rechte Maustaste.

Quickplot: $f(x,y) := ... \Rightarrow$ Direkt den Funktionsnamen (hier:,,f^{*}) in den Platzhalter einfügen. **3-D-Diagramm-Assistent**: Einfligen \rightarrow Diagramm \rightarrow 3D-Diagrammassistent...

Erstellen einer ANIMATION:

1) Mathcad verwendet eine vordefinierte Variable **FRAME** (*Bild*) zum Erstellen von Animationen. Damit ist gemeint, daß eine Bildfolge von einer bestimmten Variable abhängig gemacht werden kann. R := 100 + FRAME*10// Frame wird als Art Laufvariable verwendet: z.B: anfangs ist FRAME immer 0. 2) ANSICHT / ANIMIEREN... Zunächst wird angegeben, welche (ganzzahligen) Werte FRAME annehmen kann und wie schnell die fertige Animation ablaufen soll (FRAME/s) Anschließend wird mit der Maus ein Rahmen um die darzustellende Grafik und eventuell darzustellende Variablenwerte (z.B. R=) gezogen. Nun kann die Animation durchgeführt werden.(-Animieren) Der Ablauf der Animation kann über das Symbol **E** och weiter gesteuert werden. 3) Abspeichern der Animation als $__.AVI - Datei (\rightarrow Speichern unter...)$ Ermöglicht das Einbauen der Animation auf Knopfdruck in die Datei oder auch den Aufruf in Fremddokumenten. (Der Komprimierungsgrad kann über die Optionen eingestellt werden) 4) Aufruf einer existierenden Animation erfolgt über ANSICHT / WIEDERGEBEN. Es erscheint ein Fenster, das Öffnen einer AVI-Datei erfolgt über das Symbol 5) Man kann aber auch eine Animation als *Objekt* in ein Mathcad-Dokument einbinden: \Rightarrow **PACKAGER.EXE** aufrufen (*steht im WIN95/WIN98-Verzeichnis*) \Rightarrow die .AVI- Datei über DATEI / IMPORTIEREN einbinden. \Rightarrow BEARBEITEN / PAKET kopieren ⇒ Einfügen des Objektes in Mathcad:BEARBEITEN / INHALTE einfügen / Paket Object

Ein- und Ausgabe: Tastenkombinationen und Menüpunkte

Thema	Beispiel	Menüpunkt / Symbol	Taste(n)
INDIZES,Bereichsvariablen			
Indizierte Größen	i:=110 _{Xi}	Symbolleiste "Matrix"/"Arithm" (<i>INDEX</i>)	x [i
Bereichsoperator	i:=1 100	Symbolleiste "Matrix" (BEREICHSVARIABLE)	;
Niedrig schreiben	X _{Anfang}		x .Anfang
ZUWEISEN/ AUSWERTEN			
Zuweisungsoperator	a := 5 f(x):=2+x	Symbolleiste "Auswertung" ("Wert zuweisen")	:
Globale Zuweisung	$a \equiv 5$	Symbolleiste "Auswertung" ("Globale Zuweisung")	~
Gleichheitszeichen für Gleichungen	$2+x = 7$ $Z = R+j \cdot \omega \cdot L$	Symbolleiste "Boolesch" ("Gleich")	STRG +
Numerische Auswertung	2+5 = 7 ergebnis =	Symbolleiste "Auswertung" ("Ausdruck auswerten")	=
Symbolische Auswertung	$a+3\cdot a \rightarrow 4\cdot a$	Symbolleiste "Auswertung" ("Symbolisch auswerten") →	STRG.
Auswertung symbolischer Schlüsselwörter		Symbolleiste "Auswerten" ("Ausw. symbol. Schlüsselwörter") • →	STRG Ý .
DOKUMENT-Gestaltung			
Bereiche ausrichten		Symbolleiste	
Bereiche einsehen / trennen		 Ansicht / Bereiche Format / Bereiche / Trennen 	
Regionen definieren / bearbeiten		© Einfügen / Region Bearbeitung über die rechte Maustaste	
KOMPLEXE ZAHLEN			
Ein- und Ausgabe komplexer Zahlen	3+j	®Format / Ergebnis / Anzeigeoptionen: i oder i	3+1j (ohne <i>Space</i>)
Snoz Operationen		ingelgeophonen. Jouer i	(onne space)
Dotonzioron	o ⁷	Symbolloisto Arithmotisch"	^
Quadratwurzel	$\frac{a}{\sqrt{2}}$	Symboliciste "Arithmetisch"	١
Retrag	2_3i	Symboliciste "Arithmetisch"	\
	2-3 j	Symbolleiste "Matrix" []	
Matrix (Vektor) einfügen			STRG M
Griechische Buchstaben	α, β, γ,	"Griechisch" ab	Buchstabe+ STRG G
Markierte Bereiche Kopieren / Ausschneiden / Einfügen		∽⊕-rechts oder Menüleiste oder Symbolleiste	STRG-C STRG-X STRG-V
Zeilenumbruch bei langen Summen	nicht mögl. bei Ausdrücken	An Stelle klicken, wo Umbruch gewünscht Formelrest blau unterlegen, "+"löschen, ST	wird, rechten 'RG-RETURN
Zahlenbasis			
Eingabe	Standard: Dezima Zahl stehen!); zB	al, ansonsten Kürzel (b,o,h) nachstellen (vor 1) : 111b (<i>binär</i>), 3120 (<i>oktal</i>), 1Ah, 0FFh (<i>h</i>)	Buchstabe muß exadezimal)
Ausgabe	mit Format / A	Anzeige-Optionen / Radix einstellen	

Einstellungen / Formate / Sonstiges

Symbolleisten			
• 	Standard, Formatierung und Rechnen sollten immer aktiv sein.		
Zeichenformatierung	Für Variablen und Konstante am Besten über die Formatleiste		
	Text über <i>Format / Formatvorlage</i> .		
	Format / Text wirkt nur auf den aktuellen Textbereich.		
	Weiters: Format / Gleichung und Format / Absatz bzw. Terechts		
	Die Zeichensätze Benutzer1,,Benutzer7 können über Format/Gleichung an die		
E	eigenen Bedürfnisse angepasst und umbenannt werden.		
Ergeonisiormatierung	W Format / Ergeonis		
	Zahlenformat: Anzahl der Dezimalstellen (intern:15); Exponentialschwelle:		
	Bei Überschreitung erfolgt Ausgabe in		
	Exponentialschreibweise		
	Anzeige-Optionen Matrix-Anzeigeformat: Große Matrizen / Vektoren werde		
	mit Rollbalken ausgegeben. "Matrix" erzwingt Ausgabe als		
	Matrix!		
	Imaginärteil j oder i (für numerische Ausgaben)		
	Radix: Zahlenbasis für die Ergebnisse ()		
	<i>Einheiten</i> Einheiten "formatieren" bzw. "vereinfachen"		
	Toloranz Komplexe Schwelle: ab 10^{-n} rein imaginär/reell		
	Nullschwelle : ab 10 ⁻ⁿ erfolgt Ausgabe als "Null"		
Berechnungsmodi	@Rechnen / Automatische Berechnung (Voreinstellung): Automatische		
	Berechnung nach jeder Anderung im Dokument. Nach dem Aus-		
	schalten erfolgt Neuberechnung mit Kechnen / Derechnen (r 7)		
	Dokumentes: wichtig z.B. bei Simulationen.		
	@ <i>Rechnen / Optimierung</i> : Zwingt auch bei numerischen Berechnungen		
	zu einer vorhergehenden symbolischen Vereinfachung		
Vordef. Konstanten	Zahl \mathbf{p} (=STRG \uparrow P), Zahl e, \mathbf{X} (auch STRG \uparrow Z), $\mathbf{\%} = 0.01$		
Vordefinierte Variablen	@ Rechnen / Optionen / Vordefinierte Variablen		
	$TOL = 10^{-3}$ (Toleranz für numerische Berechnungen: Integral, Glg.,)		
	CTOL = 10^{-3} (Toleranz für Lösungsblöcke, z.B. Vorgabe – Suchen)		
	ORIGIN $= 0$ (Feldanfang – Index des 1 Feldelementes: Alle Matrizen		
	und Vektoren werden standardmäßig von 0 weg indiziert		
	soll bei 1 begonnen werden: ORIGIN=1 setzen!)		
Seitenlayout	B Format / Kopf- /Fußzeile Gestaltung der Kopf- und Fußzeile		
	@Datei / Seite einrichten / Breite einer Seite drucken: Bei Aktivierung		
	erfolgt KEIN Druck über den rechten Rand der Seite hinaus		
Eigene Fomatvorlagen	Empfehlung: Öffnen der Vorlagendatei NORMAL.MCT, Änderungen definieren		
	und mit Speichern/unter mit neuem Namen speichern (*.MCT)		
Hyperlinks	• Textbereich erstellen, markieren und Einfügen / Hyperlink aufrufen.		
(zu anderen Mathcad-	(auch eine eingebettete Grafik u. dgl. kann verwendet werden)		
Dokumenten oder sonstigen Dateien)	• Dialogfeld ausfüllen		
,	• Doppelklick auf Hyperlink öffnet Datei / Arbeitsblatt (wenn entsprechend		
	angegebene auch als Popup-Dokument)		
Internetanbindung	Ansicht / Einstellungen / Internet ; Zugang über das Informationszentrum !		
Fehlersuche	Bei Ausgabe eines Fehlers: "🕆 -rechts / Fehler rückverfolgen		

BENUTZERDEFI NI ERTE FUNKTI ONEN

<u>Allgemeine Definition:</u> Funktionsname(Var1, Var2, ...) := definierender Ausdruck globale Definition mit \equiv Symbol. $\omega(f) := 2 \cdot \pi \cdot f$ Beispiele: Funktion mit einem Argument dist (x, y) := $\sqrt{x^2 + y^2}$ Funktion mit 2 Argumenten $1_0 := 50$ T := 0, 10..30 $\alpha := 0.0012$ Das Beispiel zeigt, dass auch Vektoren oder Matrizen $l(T) := l_0 \cdot (1 + \alpha \cdot T)$ l(T) =Argumente benutzer-50.00 definierter Funktionen sein 50.60 können. 51.20 51.80 $f(x) := 2 \cdot x$ periode = 2Beispiel für eine rekursive Definition einer periodischen g(x) := wenn(x < periode, f(x), g(x - periode))Funktion x = 0, 0.01..10g(x) 2 0 2 4 6 8 10 х Das nebenstehende Beispiel zeigt, wie $f(x) := 2 \cdot x + 1$ Funktionen als Parameter anderer g(x) := x - 3Funktionen verwendet werden können. abstand(x, f, g) := |f(x) - g(x)| $abstand(x, f, g) \rightarrow |(x + 4)|$ Symbolische Berechnung abstand(1, f, g) = 5Numerische Berechnung

Rechnen mit Einheiten:

Einheiten werden wie bei Multiplikation mit vordefinierten Variablen verwendet.

z.B: Masse := 75*kg v := $100*\frac{m}{s}$ (* kann hier auch weggelassen werden) Einheiten einfügen/ ändern \rightarrow STRG U oder Symbolleiste Einheitensystem ändern: \rightarrow Rechnen/ Optionen/ Einheitensystem

Trigonometrische Funktionen	<pre>sin(z), cos(z), tan(z); (Argument in Radiant;</pre>	
	in Grad, z.B.: sin(45 Grad) oder sin(45 deg)	
	asin(z), acos(z), atan(z): Ergebnis in Radiant	
	in Grad: deg als Platzhalter eingeben	
	winkel(x,y) : Winkel (in rad) zur positiven x-Achse [0-2 p]	
Hyperbolische Funktionen	sinh(z), cosh(z), tanh(z), arsinh(z), arcosh(z), artanh(z)	
Exponential- /Logarithmusfkt.	$\exp(z) \ oder \ e^z; \ln(z), \log(z)$	
Sonderfunktionen	Besselfunktionen und modifizierte Besselfunktionen, 0z.B. J0(z), J1(z),	
	Y0(z), Y1(z), I0(z), I1(z), K0(z), K1(z), Γ (z) (Eulersche Gammafunktion)	
Komplexe Zahlen	$\operatorname{Re}(z)$, $\operatorname{Im}(z)$, $ z $, $\operatorname{arg}(z)$ (der Winkel im Bereich - p bis p)	
Rundungsfunktionen	floor (\mathbf{x}) Größte ganze Zahl \mathbf{f} x	
	ceil (\mathbf{x}) Kleinste ganze Zahl ³ \mathbf{x}	
	round (x , n) <i>Rundet x auf n Dezimalstellen</i>	
	trunc(x) Ganzzahliger Anteil von x ("truncated")	
Zahlentheorie / Kombinatorik	mod (x , y) <i>Rest bei Division von x durch y</i>	
	gcd(A) ggT von Vektorzahlen (oder Matrix) A	
	lcm (A) kgV von Vektorzahlen (oder Matrix A)	
	n! Fakultät von n	
	combin(n,k) <i>n über k (Kombination)</i>	
	wenn(bedingung,true,false)	
Bedingung (wenn)	Beispiel: sgn(x):=wenn(x>0, +1, wenn(x<0,-1,0))	
	und- <i>Verknüpfung von Bedingungen</i> : (x<1) \land (x>0)	
	oder- <i>Verknüfung von Bedingungen:</i> (x>1)∨(x<0)	
Sprungfunktion / Impulse	$\mathbf{F}(\mathbf{x})$ [:= wenn(x<0,0,1)] <i>Heaveside function</i>	
	Anwendung: $impuls(x,w) := \mathbf{F}(x) - \mathbf{F}(x-w)$	
	$chi(a,x,b) := \mathbf{F}(x-a) - \mathbf{F}(x-b)$	
	sign(x) 0 für x=0; 1 für x>0; -1 für x<0 (<i>Vorzeichenfkt</i>)	
Differential-/Integralrechnung	® Symbolfeld "Differential- und Integraloperatoren"	
Limes / Summen / Produkte	J	

STANDARDFUNKTIONEN (x bezieht sich auf reelle Größen, z auch auf mögliche komplexe Werte)

VEKTOREN UND MATRIZEN (\rightarrow Symbolleiste "Vektor- und Matrizenopeartionen")

Eingabe von Vektoren / Matrizen	1) \rightarrow Symbolleiste oder STRG M (maximal 10x10)
6.0	2) Def. über Formeln, z.B.: $i:=09$ $x_i := 2xi$
[:::]	3) Def. als Tabelle , z.B: i :=09 x _i := (,)
	4) Über einzelne Elemente, z.B. A _{2,2} := 2 A=
	Indizierung beginnt bei 0 außer man setzt ORIGIN=1
Vektoroperationen	v Betrag des Vektors v
	+/-/* - Tasten Add./ Subtr./ Mult./Skalarprodukt
	\rightarrow Symbolleiste $\mathbf{M}^{\mathbf{T}}$ Zeilenvektor durch Transponieren
	\rightarrow Symbolleiste å v Summe der Vektorelemente
	\rightarrow Symbolleiste $\vec{x} \times \vec{y}$ Vektorprodukt
Matrizenoperationen	M Determinante
	+/-/* - Tasten Addition, Subtraktion, Multiplikation
	M ⁻¹ Inverse Matrix
	\rightarrow Symbolleiste $\mathbf{M}^{\mathbf{T}}$ Transponierte Matrix
	M ^{<n></n>} n-te Spalte der Matrix A

Größe/ Umfang von Feldern	rows(A)	Anzahl der Zeilen von A [dt: zeilen]
	cols(A)	Anzahl der Spalten von A [dt: spalten]
	length(v)	Anzahl der Elemente des Vektors v [länge]
	last(v)	Index des letzten Elementes von v
	<pre>max(A),min(</pre>	(A) größtes / kleinstes Element von A
Zusammensetzung von Matrizen	erweitern(<i>I</i>	A, B) B an A anfügen (selbe Zeilenzahl!)
und Untermatrizen	stapeln(A,F	3) A und B übereinander (selbe Spaltenzahl!)
	submatrix(I	A,z1,z2,sp1,sp2) Submatrix von A
		Zeilen z1bis z2 und Spalten sp1 bis sp2)
Sortieren von Feldern	sort(v)	Vektor v aufsteigend sortieren
	auch: spsort(A,n), z	<pre>sort(A,n), umkehren(A), umk ehren(v)</pre>
Symbolische Berechnungen	1) Matrix markieren \rightarrow Symbolik / Matrix	
	2) \rightarrow -Operator +	+ Symbolik-Symbolleiste

GLEICHUNGEN / GLEICHUNGSSYSTEME

Lösen einer einzelnen Gleichung	symbolisch: * Schlüsselwort solve / auflösen
	$\mathbf{green} = \mathbf{Ind} = \mathbf{Lostingsblock} (steller \phi)$ $\mathbf{polyroots(v)} (dt.: polyroots = nullstellen)$ Ermittelt alle Nullstellen eines Polynoms n-ten Grades mit den $n+1$ Koeffizienten $des Vektors v (a_0 a_n)$
Lineare Gleichungssysteme	<u>numerisch</u> über die Matrizenrechnung: X := A ⁻¹ xb <u>symbolisch</u> ebenfalls über die Matrizenrechnung oder mit <i>given – find</i> oder über das Schlüsselwort <i>auflösen</i>
Lösen eines allgemeinen Gleichungssystems mit "Lösungsblock" <i>symbolisch</i> (<i>keine Ungleichungen!</i>)	Lösungsblock given - find (dt: Vorgabe - Suchen) given Angabe der Gleichung(en) [symbolisches = verwenden] find(Variablen) @ z.B.: find(x,y) @
Lösen eines allgemeinen Gleichungssystems <i>numerisch</i> mit ,,Lösungsblock" (<i>auch Ungleichungen möglich</i>)	Lösungsblock given - find (dt: Vorgabe – Suchen) Zuerst Angabe von Schätzwerten (z.B: x:=2 y:=1) given Angabe der Gleichung(en) [Ungleichungen] find(Variablen) = z.B.: find(x,y)= Statt find bzw. Suchen können im Lösungsblock verwendet werden: minfehl(Variablen) – Lösungswerte, die den Bedingungen "am besten" entsprechen (ERR enthält die Größe
	des Fehlervektors) maximieren(f, Variablen), minimieren(f, Variablen) liefern jene Werte, für welche die Zielfunktion f maximal bzw. minimal wird.

WAHRSCHEINLICHKEIT / STATISTIK

Diskrete Verteilungen (density functions and probability functions)

dbinom (x,n,p) pbinom (x,n,p)	Wahrscheinlichkfkt. g(x) Verteilungsfkt. G(x) Binomialvtlg.
dpois (x, μ) ppois (x, μ)	Wahrscheinlichk.fkt.g(x) Verteilungsfkt. G(x) Poissonvtlg

Stetige Verteilungen (density functions and probability functions)

dnorm (x, μ . σ) pnorm (x, μ , σ)	Dichtefkt g(x) Verteilungsfkt G(x) der Normalverteilung
knorm(u)	G(u) der standardisierten Normalverteilung = pnorm(u,0,1)
dt(x,f) pt(x,f)	g(x) / G(x) der t-Verteilung mit f Freiheitsgraden
dchisq(x,f) pchisq(x,f)	$g(x) / G(x)$ der χ^2 -Verteilung mit f Freiheitsgraden
dF(x,f1,f2) pF(x,f1,f2)	g(x) / G(x) der F-Verteilung mit Freiheitsgraden f1,f2
dlnorm (x, μ, σ) plnorm (x, μ, σ)	g(x) / G(x) der logarithmischen Normalverteilung
dunif (x,a,b) punif (x,a,b)	g(x) / G(x) der Gleichverteilung im Intervall [a,b]

Inverse Verteilungen

$\textbf{qbinom}(G(x),n,p) \mid \textbf{qpois}(G(x),\!\mu)$	Inverse Verteilungen: Liefern den x (t, χ^2 , F) - Wert zu dem
$\begin{array}{l} \textbf{qnorm}(G(x),\!\mu,\!\sigma) \\ \textbf{qt}(G(t),\!f) & \mid \textbf{qF}(G(F),\!f1,\!f2) \\ \textbf{qchisq}(G(\chi^2),\!f) & \mid \textbf{lnorm}(G(x),\!\mu,\!\sigma) \end{array}$	gegebenen Wert G(x) [bzw. G(t),G(χ^2), G(F)] mit den entsprechenden Parametern.

Zufallszahlengeneratoren (*random functions*)

runif (n,a,b)	n in [a,b] gleichverteilte Zufallszahlen
rnd (x)	eine in [0,x] gleichverteilte Zufallszahl (= runif(1,0,x)
$rbinom(n,n,p)$, $rpois(n,\mu)$,	n gemäß Biomial-, Poisson-, Normal-, log.Normal-, χ^2 -,
rnorm (n,μ,σ), rlnorm (n,μ,σ),	t- hzw F-Verteilung verteilte Zufallszahlen
rchisq (n,f), rt (n,f), rF (n,f1,f2)	t 62w.1 Verendig verene Zuranszahen

Histogramm-Funktion

hist(intervallvektor x, daten A)	 liefert Vektor mit absoluten Häufigkeiten der Datenmatrix A in den entsprechenden Intervallabschnitten (x_i ≤ Wert < x_{i+1}) ⇒ <i>Histogramme</i>. Beachte: Die Dimension des resultierenden Histogrammvektors ist um 1 kleiner als die Dimension des Intervallvektors x.
Beispiel zur Verwendung der hist-Funk	tion
messw := rnorm (N, μ, σ)	N normalverteilte Meßwerte
$t_{\min} := \min(messw)$	Minimalwert
$t_{max} := max(messw)$	Maximumwert
$n := \text{wenn} (N \le 400, \text{floor})$	(\sqrt{N}) ,20) Übliche Bestimmmung der Klassenzahl
$\Delta t := \frac{t_{\max} - t_{\min}}{n - 1}$	Berechnung der Klassenbreite
$j := 0 \dots n$ trp $j :$	$t = t_{min} + j \cdot \Delta t$ Intervallrandpunkte
$h \coloneqq \frac{\text{hist}(\text{trp , messw})}{N}$	Bestimmung der relativen Häufigkeiten der einzelnen Klassen: h _k mit k von 0 - (n-1)

Statistische Kennwerte

<pre>mean(A) [dt: mittelwert],</pre>	Mittelwert, Median, Varianz und Standardabweichung der Datenfelder
median(A).	(Vektoren, Matrizen) A.
Var(A), Stdev(A) ,,Var" und "Std werden durch n	"Var" und "Stddev" wurden durch (n-1) dividiert, "var" und "stddev"
	werden durch n dividiert.

INTERPOLATIONS- und Vorhersagefunktionen / REGRESSION / GLÄTTUNG

linterp (vx,vy,x)	Lineare Interpolation zwischen den Punkten (vx_i, vy_i) an der Stelle x. $(vx und vy sind also Vektoren)$		
Splinefunktionen Ispline (vx,vy), pspline (vx,vy) oder kspline (vx,vy) in Zusammenarbeit mit interp (vs,vx,vy,x) prognose (v,m,n)	Kubische Splineinterpolation durch die Punkte (vx, vy) Ispline: Annäherung an Gerade an den Endpunkten pspline: Annäherung an Parabel an den Endpunkten kspline: Annäherung an kubische Parabel an den Endpunkten Die Funktionen bestimmt Koeffizienten der 2.Ableitungen z.B. vs := lspline(vx,vy) y := interp(vs,vx,vy,x) (<i>Hinweis: Spline-Interpolation ist auch zweidimensional möglich</i> Liefert n "Vorhersagewerte" gemäß einem linearen Vorhersage-		
	argoritimus aus in aquitistai	iteli weiteli aus delli Datelivektor v	
Lineare Regression slope(vx,vy) intercept(vx,vy) korr(vx,vy) stdfehl(vx,vy) Polynomische Regression regress(vx,vy,n) [bzw. loess(vx,vy,spanne)] + interp(vs,vx,vy,x) Spez. Regressionsfunktionen expanp(vx,vy,startwerte) lgsanp(vx,vy,startwerte) loganp(vx,vy,startwerte) sinanp(vx,vy,startwerte)	$y = slope(vx, vy) \times + intercept(vx, vy)$ liefert die lineare Ausgleichsfunktion zu den Datenpunkten (vx _i , vy _i); korr liefert den Korrelationskoeffizienten, stdfehl den Standardfehler bei der linearen Regression. slope = neigung ; intercept = achsenabschn Anpassung einer Polynomfunktion n-ter Ordnung an Datenvektoren vx, vy. regress liefert den Wert vs für die interp – Funktion. loess statt regress liefert ein Polynom 2.Grades, das auf Umgebungen der Länge spanne angepasst ist. Die Funktionen regress und loess gibt es auch für 3-dimens. Werte! Anpassung an folgende spezielle Funktionen $\rightarrow a'e^{b x} + c$ $\rightarrow a'(1+be^{-c x})$ $\rightarrow a'ln(x)^{b} + c$ $\rightarrow a'x^{b} + c$		
		den Parametern a,b,c	
Verallgemeinerte Regression linanp(vx,vy,Fkt) genanp(vx,vy,startwerte,Fkt)	Anpassung beliebiger Funktionen an Datenvektoren vx, vy. (<i>linanp</i> : Linearkombination beliebiger Funktionen, <i>genanp</i> im allgemeinen Fall). Fkt enthält Vektor von Funktionen (\rightarrow s.Hilfe oder Quicksheets)		
<i>Glättungsfunktionen</i> medgltt(vy,n)	 Glättung durch gleitende Mediane aus einem Datenfenster von n Elementen vy Datenvektor mit N Elementen; z.B: N=100 n Breite des Datenfensters; n muß kleiner N sein; zB: n =3 n muß eine ungerade Zahl sein. Ergebnis ist ein Vektor mit N Elementen, der die geglätteten Datenwerte enthält. Weitere Glättungsfunktionen sind: kgltt(vx vx h): strgltt(vx vx) 		

DIFFERENTIALGLEICHUNGEN / TRANSFORMATIONEN

Lösung einer Differentialgleichung	 Symbolisch: Integration (→ Formelheft) oder Transformationen Numerisch mit Lösungsblock Given – Odesolve (Beispiel) 		
given	Vorgabe		
- Odesolve(x.h.[step])			
(gewöhnliche	$x^{2} \cdot \frac{d^{2}}{2}y(x) - x \cdot \frac{d}{2}y(x) + 10 \cdot y(x) = 0$		
Differentialgleichungen)	dx [°] dx		
	y(1) = 0 $y'(1) = 3$		
	y := Odesolve(x, 20)		
	Man beachte zur Anwendung von Odesolve:		
	• Der 1.Parameter ist die Unbekannte (z.B: x oder t)		
	• Der 2.Paramter gibt den Endpunkt des Integrationsintervalles an (dieser muß größer als der Anfangswert (hier 1) sein		
	• Der 3.Parameter kann meist weggelassen werden.		
	• Die Diffgl. muß linear sein in der höchsten auftretenden Ableitung		
	• Die Anfangsbedingung wird mit Hilfe des Primsymbols (' = STRG – F7) eingegeben!		
	 Das Verfahren "odesolve" verwendet die allgemeinere Funktion rkfest und legt durch die berechneten Punkte eine Spline-Funktion Diese Funktion [→ rkfest()] kann auch in allgemeineren Fällen und bei Diffentialgleichungssystemen verwendet werden. 		
Laplace-Transformation	Variable (z B t" hzw s") in einem Ausdruck anklicken und		
	Symbolik / Transformation / Laplace		
	bzw. Symbolik/ Transformation / Laplace invers aufrufen		
	Altiva sumbolische Perschnung a Soite 15		
Fourier-Transformation	Variable (z.B., .t" bzw		
	Symbolik / Transformation / Fourier (bzw. Fourier invers) aufrufen.		
	Aktive symbolische Berechnung s. Seite 15		
z-Transformation	Variable (z.B. "n" bzw. "z" in einem Ausdruck anklicken und		
	Symbolik / Transformation / Z (bzw. Z invers) aufrufen		
	Aktive symbolische Berechnung s. Seite 15		
Diskrete Fourier-Transformation	Reelle Daten mit 2 ^m Datenpunkten		
(= Fast Fourier Transform	fft(v) v enthält 2^m Elemente (= die in regelmäßigen		
FFT)	Intervallen ermittelten Meßwerte im Zeitbereich		
	Ergebnis ist ein Vektor mit den Koeffizienten c_j der komplexen Fourierreihe (i=0, 2 ^{m-1})		
	ifft(v) Inverse Transformation Der Vektor v enthält		
	$1+2^{m-1}$ Elemente (= die Koeffizienten c;)		
	Ergebnis ist ein Vektor mit 2^m Elementen im Zeit-		
	bereich. Es gilt: $ifft(fft(v))=v$		
	Komplexe Daten und 2-dim. Fouriertransformation		
	${f cfft}({f A})$ A ist Vektor oder Matrix komplexer Daten, die aus in		
	regelmäßigen Abständen vorgenommenen Messungen		
	im Zeitbereich stammen. Das Ergebnisfeld hat die $C_{\mu\nu}$		
	gleicne Grope wie A (Gr requenzbereicn:) iefft(A) Inverse Transformation		
	KALUTA Inverse Transjormanon.		
	Hinweis: Die Funktionenpaare FFT(v),IFF(v), CFFT(A), ICFFT(A)		
Diabrata Wayalat Transf	emsprechen obigen Funktionen (anderer Normalisierungstaktor!) wave(v) / iwave(v) [(inverse) diskrete Wavelet-Transformation]		
Diskrete wavelet-Transf.			

DATEITRANSFERS / KOMPONENTEN

Arbeit mit strukturierten	A:=PRNLESEN(datei)	
ASCII-Dateien (PRN)	A ist ein Feld (Vektor oder Matrix), datei ist eine ASCII- Datei	
	(PRN) mit Trennzeichen (Tabulatoren,)	
	z.B: punkte:=PRNLESEN("C:\\werte.prn") (bzw. "werte.txt")	
	PRNSCHREIBEN(datei):=A ; PRNANFÜGEN(datei):=A	
Arbeit mit einzelnen Datensät-zen	v _i :=LESEN(datei)	
(unstrukturierten Dateien) im ASCII-	SCHREIBEN(date1):= v_i	
Format (DAT)	ANFOGEN(date1):= V _i	
KOMPONENTEN 📪	Ermöglicht Lesen / Schreiben von Dateien in verschiedenen	
einfügen	Formaten mit automatischer Aktualisierung.	
$(\rightarrow Einf"ugen/Komponente)$	Aufruf des Komponentenassistenten	
	 Wertübergabe Mathcad Komponente: Im Platzhalter <u>unterhalb</u> der jeweiligen Komponente 	
	Wertübergabe Komponente Mathcad:	
	Im Platzhalter links neben der jeweiligen Komponente	
Statische Dateien	• Komponentenassistent – Dateien Lesen / Schreiben	
(z B eine gespeicherte FXCFL-	Die Datei wird Datei wird	
(2.D. ene gespeienerte LACLE	schließlich wie nebenstehend A ≔	
Datel)	eingebunden. Über *D-rechts	
	lungen vorgenommen werden	
	(z.B. der übernommene Tabellenbereich über die <i>Eigenschaften</i>)	
Eingabetabelle	Komponentenassistent – <i>Eingabetabelle</i>	
	Ermöglicht die Eingabe großer Tabellen oder Matrizen durch	
	automatisches SCROLLING:	
EXCEL-Objekt		
5	• Komponentenassistent – <i>Excel</i>	
	1) Auswahl, ob neue oder bestehende Out :=	
	Excel Datei.	
	2) "Als Symool anzeigen (J/N) 3) Anzahl der Fin- und	
	Ausgabevariablen und deren	
	Tabellen-Bereiche angeben.	
	(Kann später über ^c-rechts noch (In 1 In 2)	
	verändert werden)	
AXUM-Objekt	• Komponentenassistent – $AXUM$	
	Technische $2D/3D$ – Diagramme und Datenanalyse	
SmartSketch – Objekt	• Komponentenssistent Smartskatch	
	Tool für 2D-Zeichnungen, die mit Mathcad verbunden sein können:	
	z.B. können Mathcad-Berechnungen die Größe bestimmter Obiekte	
	in einer Zeichnung steuern. Es können auch Daten aus der	
	Zeichnung herausgelesen und an Mathcad zur weiteren	
	Verwendung übergeben werden. (Informations-zentrum /	
	Erweiterungsmöglichkeiten für Mathcad)	
Bilddateien	1) Über die Windows-Zwischenablage	
	2) Aus einer Datei über Einfügen/Bild (In Platzhalter Namen der	
	Bild-Datei schreiben (z.B.: "C:\win95\ägypten.bmp")	
	3) Bilder können auch in Matrizen eingelesen und damit	
	Bildverarbeitung simuliert werden: \rightarrow BMPLESEN, RGBLESEN,	
	BMPSCHREIBEN. RGBSCHREIBEN, BILD_LESEN, ROT_LESEN,	
	GKUN_LESEN, BLAU_LESEN,	

Symbolische Berechnungen mit dem Symbolik-Menü

Symbolische Berechnungen lassen sich prinzipiell auf 2 Arten durchführen (2.Art ab Seite 13)

Symbolik-Menü	Hat den Vorteil der bequemen Menüsteuerung, jedoch den gravierenden	
	Nachteil, dass keine Aktualisierung bei Veränderungen im Arbeitsblatt erfolgt	
	(keine aktive Symbolik).	
	Beachte: Symbolische Ausdrücke müssen in dieser Rechenversion immer	
	"ausführlich angeschrieben" werden, vorherige Funktionsdefinitionen können	
	nicht verwendet werden! (ein weiterer Nachteil!)	
	Manchmal von Vorteil: Unabhängig von vordefinierten Werten werden die	
	Ausdrücke rein symbolisch interpretiert. Außerdem können auch	
	Teilbereiche markiert und z.B. vereinfacht werden	

• **@**Symbolisch / Auswertungsformat

Ermöglicht die Angabe, dass *Kommentare* automatisch angezeigt werden sollen.(sehr empfohlen!!) Außerdem wird angegeben, WOHIN das symbolische Ergebnis geschrieben werden soll.

• Symbolische Operationen, die sich auf ganze Ausdrücke beziehen:

Der Ausdruck wird als Ganzes angesprochen und muß daher auch als solcher markiert sein bzw. selektiert werden (*blaue Selektion*):

Der obere Teil des SYMBOLIK-Menüs ist daraufhin aktiviert:

* Auswerten / Symbolisch Auswerten	entspricht bis auf die Aktualisierung dem Pfeiloperator
* Auswerten / Gleitkomma	Konstanten wie π werden numerisch verwendet (<i>gleit</i>)
* Auswerten / Komplex	Ausw. komplexer Zahlen in Komponentenform (komplex)
* Vereinfachen	Vereinfachen von Ausdrücken (vereinfachen)
* Entwicklen	Ausmultiplizieren von Potenzen/Produkten (entwickeln)
* Faktorisieren	Herausheben gemeinsamer Faktoren (faktor)
* Zusammenfassen	Ordnen nach fallenden Potenzen (sammeln)
* Polynom-Koeffizienten	Polynomkoeffizienten als Vektor (koeff)

Variablenbezogene Aktivitäten

Im betreffenden Ausdruck wird die Variable markiert (blau selektiert). Nun sind im Symbolisch-Menü jene Bereiche aktiviert, die symbolische Berechnungen ermöglichen, die sich auf eine Variable beziehen:

* Variable 🕨 Auflösen	Auflösen einer Gleichung (Formelumformung; auflösen)
* Variable 🕨 Ersetzen	mark. Variable wird durch Zwischenablage ersetzen
* Variable 🕨 Differenzieren	
* Variable 🕨 Integrieren	
* Variable 🕨 Reihenentwicklung	Taylor- bzw. Laurentreihenentwicklung um x=0 (<i>reihe</i>)
* Variable Partialbruchzerlegung	Zerlegung einer rationalen Fkt in Partialbrüche (<i>teilbruch</i>)

* Transformation > Fourier | Fourier invers ; Laplace | Laplace invers ; Z | Z invers

• Matrizenoperationen

* Symbolik / Matrix 🕨 Transponieren | Invertieren | Determinante

Aktive Symbolische Berechnung / Schlüsselwörter

\rightarrow	(STRG .)	Symbolische Auswertung	
		Dieser Operator ist das symbolische Gegenstück zum numerischen "=".	
		Vorteil: Aktualisierungen erfolgen automatisch(,,aktiver Operator"),	
		Funktionsdefinitionen können verwendet werden.	
		EINGABE:	1) Ausdruck eingeben
			2) (<i>symbolische Auswertung</i>)
$\bullet \rightarrow$	(STRG Ý.)	Auswertung	symbolischer Schlüsselwörter
82 (2)		Schlüsselwört	<i>ter</i> können angegeben werden, um gewisse Modifizierungen
	der symbolischen Berechnung vornehmen zu können.		
		Die Schlüsselwörter können auch der Symbolleiste Symbolik entnommen	
		werden.	
		EINGABE:	1) Ausdruck eingeben
			$2) \bullet \rightarrow$
			3) Schlüsselwort in den Platzhalter eingeben
Alternative:		Alternative	1) Ausdruck eingeben
		7 Memarive.	2) Schlüsselwort aus der Symbolik-Palette anklicken
			2) sentusle restliche Distributer ausfüllen
			5) eventuene restrictie i latzitaller austulien
In manchen Fällen (bei symbolischer Auswertung bzw. bei Verwendung von vereinfachen), gibt die Verwendung			
von <i>Modifiers</i> einen Sinn.			
	anneh	men	Einschränkungen für die Auswertung (z.B: p>0)
	reell	Auswer	tung nur für reellwertige Ausdrücke
	RealR	ange	Einschränkung auf reellen Bereich
trig			Anwendung von $\sin^2 x + \cos^2 x = 1$ und $\cosh^2 x - \sinh^2 x = 1$ zur Vereinf.

Schlüsselwort	Bedeutung	Beispiele
gleit, <i>m</i> (float)	zeigt Fließkommawert mit m Stellen Genauigkeit an (m ist voreingestellt auf 20)	$\ln(2) \cdot x^2$ gleit, $3 \rightarrow .693 \cdot x^2$ π float $\rightarrow 3.1415926535897932385$
komplex (complex)	Symbolische Berechnung im Komplexen; Ergebnis in Komponentenform a+j*b	$e^{\mathbf{j} \cdot \mathbf{\phi}}$ komplex $\rightarrow \cos(\phi) + \mathbf{i} \cdot \sin(\phi)$
annehmen, <i>bedingung</i> (assume)	Legt Bedingungen für eine oder mehr Variablen fest	$\int_{0}^{\infty} e^{-a \cdot t} dt \text{ annehmen, } a > 0 \rightarrow \frac{1}{a}$
auflösen, <i>var</i> (solve)	Auflösen einer Gleichung bzw. auch eines Gleichungssystems	$2 \cdot \mathbf{b} + \mathbf{c} = \mathbf{d} \text{ auflösen, } \mathbf{c} \xrightarrow{>} -2 \cdot \mathbf{b} + \mathbf{d}$ $\begin{bmatrix} \mathbf{x} + \mathbf{y} = 2\\ 2 \cdot \mathbf{x} + \mathbf{y} = 1 \end{bmatrix} \text{ auflösen, } \begin{bmatrix} \mathbf{x}\\ \mathbf{y} \end{bmatrix} \xrightarrow{>} (-1 \ 3)$
vereinfachen (simplify)	Arithmetisch Vereinfachen (Kürzen, Einsatz grundlg. Funktionen.)	$a + 2 a$ vereinfachen $\Rightarrow 3 \cdot a$ $1 - \sin(x)^2$ vereinfachen, trig $\Rightarrow \cos(x)^2$
<pre>ersetzen,varl=var2 (substitute)</pre>	Ersetzt alle Vorkommen einer Variablen var1 durch einen Ausdruck oder eine Variable var2	$x^{2} + \frac{1}{x}$ ersetzen, $x = \sqrt{a} \Rightarrow a + \frac{1}{\sqrt{a}}$
faktor (factor)	Zerlegung in Produkt / Faktorisieren, Herausheben	1235 faktor $\Rightarrow 5.13.19$ $x^{3} + x^{2}$ faktor $\Rightarrow x^{2}.(x+1)$

© Wilfried Rohm, 04.02.02, HTL Saalfelden

MATHCAD-15

Schlüsselwort	Bedeutung	Beispiele
entwickeln	Ausmultiplizieren von Potenzen und	$(a+b)^2$ entwickeln $\Rightarrow a^2 + 2 \cdot a \cdot b + b^2$
(expand)	Produkten	$x^2 + 1$ antwickeln $\rightarrow x + 1$
koeff, <i>var</i>	Bestimmung der Polynomkoeffizien-	Гъј
	ten eines Ausdrucks. Das Ergebnis	$a \cdot x + b \text{ koeff}, x \rightarrow \begin{bmatrix} 0 \\ - \end{bmatrix}$
	Wird in einen vektor geschrieden	
sammern, <i>vur1</i> ,	Potenzen	$(1+y+x^2)^2$ sammeln, $x \rightarrow x^4 + (2+2\cdot y) \cdot x^2 + (1+y)^2$
(collect)		[
reihe, <i>var=</i> z, <i>m</i>	Entwickelt den folgenden Ausdruck	$\sin(x)$ reibe $x \rightarrow x - \frac{1}{2} \cdot x^3 + \frac{1}{2} \cdot x^5$
(ceries)	Taylorreihe < m.Grad (um 0 bzw. um	$\sin(x) \operatorname{reme}_{,x} - \frac{x}{6} - \frac{1}{120}$
(Selies)	den angegebenen Punkt z)	$\sin(x)$ reibe $x=\frac{\pi}{4}$ $4 \rightarrow 1 - \frac{1}{2} \cdot \left(x - \frac{1}{2} \cdot \pi\right)^2$
	The line of the second s	$\operatorname{sin}(x) \operatorname{reine}(x - \frac{1}{2}, x - \frac{1}{2}, \frac$
	Fehlt die Angabe von m, wird m=o	
	Fehlt die Angabe des Entwicklungs-	$\sin(x)$ reihe, x, $8 \rightarrow x - \frac{1}{6} \cdot x^2 + \frac{1}{120} \cdot x^2 - \frac{1}{5040} \cdot x^2$
	punktes z, so wird z=0 gesetzt.	
		$\sin (x + y)$ rethe, x, y $\rightarrow x + y$
+	Zerlegt eine gebrochen-rationale	
letiprucii, vai	Funktion in Partialbrüche. <i>var</i> ist die	$\frac{1}{1}$ konvert, teilbruch, x $\rightarrow \frac{1}{1} - \frac{1}{1}$
	Variable im Nenner des Ausdrucks	$x^{2} + 3x$ (3·x) (3·(x+3))
fourier, var	Fouriertransformation eines	$Dirac(t - t_{o})$ fourier $t \rightarrow exp(-i_{o}, t_{o}, \omega)$
	Ausdrucks bezuglich variable var. Das Freebnis ist eine Fkt. von ω	
invfourier. var	Inverse Fouriertransf. eines	invfourier. 0
111110001202,	Ausdrucks bezüglich Variable var.	$2 \cdot \frac{\sin(\omega)}{\cos(\omega)} \xrightarrow{\text{versinfachen}} \Phi(t+1) - \Phi(t-1)$
	Das Ergebnis ist eine Fkt. von t	
laplace, var	Laplace-Transformation eines	$e^{-a \cdot t}$ laplace $t \rightarrow \underline{1}$
	Das Ergbenis ist eine Fkt. von s	(s+a)
invlaplace, var	Inverse Laplace-Transf. eines	1
- Kan	Ausdrucks bezüglich Variable var.	$\frac{1}{1+a}$ invlaplace, $s \rightarrow \exp(-a \cdot t)$
	Das Ergebnis ist eine FKt. von t.	
ztrans, var	bezüglich Variable var. Das Ergebnis	$\Phi(n)$ ztrans, $n \rightarrow \frac{z}{(z-1)}$
	ist eine Funktion von z.	(z-1)
invztrans, <i>var</i>	Inverse Z-Transformation eines	$Z \rightarrow 1$
	Ausdrucks bezüglich variable var.	$\frac{1}{z-1}$ myzuans, $z - 1$
$M^{T} \rightarrow$	Matrizenoperationen:	
$M^{-1} \rightarrow$	Transponierte Matrix	$A := \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} \qquad A^{T} \Rightarrow \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$
	Inverse Matrix	
	Determinante	[-2 1]
		$A^{-1} \rightarrow \begin{vmatrix} 3 & -1 \end{vmatrix} A \rightarrow -2$

Manchmal wird die Verwendung von mehreren Schlüsselwörtern zum Ziel. Diese werden einfach hintereinander angeklickt.

Beispiel:

$$\int_{0}^{\infty} e^{-p \cdot t} \cdot \left(1 - e^{-a \cdot t}\right) dt \quad \begin{vmatrix} \text{annehmen } , p > 0 \\ \text{annehmen } , a > 0 \end{matrix} \xrightarrow{a} \frac{a}{((p+a) \cdot p)}$$

MATHCAD-16

×

PROGRAMMI EREN (siehe *Palette Programmierung*)

		Programmieru	ng
+1 Zeile	Neue Programmzeile	2 	
7	Wertzuweisung an eine lokale Variable	+1 Zeile	
if	Verzweigung (Anweisung if Bedingung)	if	2
otherwise	Nein-Zweig einer Verzweigung		1
for	Zählschleifen	for	
while	Schleife mit while-Bedingung am Beginn	all 20	
break	Abbruch einer Schleife	break	
continue	Abbruch des aktuellen Schleifendurchlaufs	return	
return	Abbruch und Rückgabe des Wertes (return Wert)		
on error Bei Fel	hler in <i>Ausdr2</i> wird <i>Ausdr1</i> ausgewertet (<i>Ausdr1</i> on error <i>Ausdr2</i>)		

+1 Zeile (if otherwise for while break continue return on error

Beispiel1: Definition einer periodischen Funktion

Schreibweise: 1) g(x):=

2) Programmierpalette: "*Neue Zeile*" oder "**Ý** +]"-Tastenkombination 3) Programmierpalette: Symbole "¬ ", "if" und "otherwise" anklicken 4) Platzhalter ausfüllen

Beispiel 2: Summe der Zahlen von 1 bis n

Sum(n) :=	s←0	
	for i∈ 1n	
	s←s + i	
Sum(100) = 5050		

Verwendung der for-Schleife

Beispiel 3: Newtonverfahren

newton $(x, f, f_x) :=$	i← 0	
	while $ f(x) > 10^{-6}$	Solange der Funktionswert zu groß
	i←i+1	ist i zählt die Anzahl der Iterationen
	break if i≥10	Abbruch, wenn zu viele Iterationen
	return "Ableitung ist 0!" if $ f_{x}(x) < 10^{-6}$	Ableitung 0 im Nenner verhindern!!
	$x \leftarrow x - \frac{f(x)}{f_{x}(x)}$ otherwise	Eigentliche Iterationsformel
return "Zuviele Iterationen" if i≥10		
return x otherwise		Rückgabe von x als "Nullstelle"
$f(x) := \sin(x) - 1 + x$	$f_x(x) := \frac{d}{dx} f(x)$ $x := 1$	Beispiel zur Anwendung der
$x_{ns} := newton(x, f, f_x)$	$x_{ns} = 0.511$	© Wilfried Rohm, 04.02.02, HTL Saalfelden